首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3245篇
  免费   697篇
  国内免费   556篇
测绘学   162篇
大气科学   101篇
地球物理   823篇
地质学   2032篇
海洋学   247篇
天文学   35篇
综合类   238篇
自然地理   860篇
  2024年   7篇
  2023年   51篇
  2022年   126篇
  2021年   122篇
  2020年   134篇
  2019年   127篇
  2018年   99篇
  2017年   117篇
  2016年   150篇
  2015年   126篇
  2014年   165篇
  2013年   182篇
  2012年   189篇
  2011年   200篇
  2010年   182篇
  2009年   178篇
  2008年   211篇
  2007年   207篇
  2006年   180篇
  2005年   162篇
  2004年   193篇
  2003年   158篇
  2002年   146篇
  2001年   121篇
  2000年   144篇
  1999年   99篇
  1998年   113篇
  1997年   90篇
  1996年   78篇
  1995年   78篇
  1994年   81篇
  1993年   66篇
  1992年   59篇
  1991年   53篇
  1990年   39篇
  1989年   26篇
  1988年   15篇
  1987年   6篇
  1986年   8篇
  1985年   6篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有4498条查询结果,搜索用时 46 毫秒
91.
富营养化对湖泊生态系统能流和物流的影响具有不确定性,多数研究仅关注富营养化对浅水湖泊食物网结构和功能的影响,而富营养化对消费者群落碳源和氮源的影响及其时空分异特征较少关注.鉴于此,本研究选取华北平原最大的浅水富营养化湖泊——白洋淀为研究区,依据生境理化参数将白洋淀划分为3类生境(生境1(Ⅰ和Ⅱ区)主要遭受上游府河废水排放影响;生境2(Ⅴ、Ⅶ和Ⅷ区)主要遭受水产养殖和生活污水的影响;生境3(Ⅲ、Ⅳ和Ⅵ区)遭受人为干扰较小).在2018年4月和8月分别收集了浮游生物、底栖生物和鱼类样品,运用碳、氮稳定同位素技术定量估算3类生境中底栖和浮游生物对消费者群落碳源和氮源贡献百分比的时空分异特征;同时收集水体和沉积物样品进行常规理化参数分析,明晰富营养化对白洋淀消费者群落碳源和氮源贡献百分比的影响.结果表明:1)就水体和沉积物理化参数季节变化而言,除pH相对稳定外,化学需氧量(COD)、沉积物氨氮(NH3-Ns)、总氮(TN)和沉积物总磷(TPs)4月高于8月,而其他理化参数则8月高于4月;就空间分布而言,温度(T)、水深(WD)、溶解氧(DO)和沉积物总碳(TCs)值在生境3中最高,而其他理化参数的值则在生境1中最高;2)就δ13C和δ15N空间分布而言,对于同一群落,δ13C和δ15N在3类生境中富集程度呈现显著差异;就时间分布而言,不同季节消费者群落的δ13C值存在显著差异,而δ15N值未呈现显著差异,且消费者群落的δ13C和δ15N呈显著负相关;3)就消费者营养级的空间分布而言,3类生境存在显著差异,同一消费者营养级在生境1中最高,在生境3中最低;就时间分布而言,消费者营养级未呈现显著差异;4)浮游生物对消费者群落碳源和氮源贡献百分比4月高于8月,生境1高于其他生境;而底栖生物对消费者群落碳源和氮源贡献百分比则8月高于4月,生境3高于其他生境;5)通过相关分析,结果表明白洋淀消费者群落的δ13C与总磷(TP)、TCs、沉积物总氮(TNs)、总有机碳(TOCs)、TPs呈现负相关关系;δ15N值与TP、TCs、TNs、TOCs、TPs呈正相关关系.因此,湖泊富营养化会影响消费者群落的碳源和氮源,进而改变湖泊生态系统的能流和物流.  相似文献   
92.
1973-2018年青海湖岸线动态变化   总被引:2,自引:2,他引:0  
青海湖独特的地理位置使得其不仅对环湖周边区域气候起着天然调节器的作用,而且还拥有丰富的湖岸线资源,准确、及时地掌握青海湖岸线动态变化对保护沿湖生态环境有重要意义.因此本文基于1973-2018年Landsat MSS/TM/OLI遥感影像和1961-2017年实测水位资料,对青海湖岸线动态变化及对鸟类栖息地的影响进行研究,同时结合面积、水位及气象数据讨论了影响岸线变化的主要因素.研究表明:1)近45年来青海湖岸线发生变化最大的区域是东岸的沙岛,西岸的鸟岛、铁布卡湾及北岸沙柳河入口区域.尤其自2004年以来,鸟岛地区岸线后退距离最大(5.52 km),鸟类栖息地扩张约97.94 km2,为鸟类提供了较好的栖息环境.(2)1973-2018年青海湖岸线长度以0.88 km/a的速率逐渐延长.1997年之前岸线长度呈较为平稳的上升趋势,1997-2004年呈波动下降趋势,2004年之后呈剧烈波动增加趋势,岸线曲折性也表现出相同的变化趋势.(3)总体上岸线长度和曲折性受水位和面积的影响并不显著,但在不同的水位情况下,二者对青海湖动态变化做出不同的响应.尤其当水位小于3193.3 m或面积小于4249.3 km2时,岸线曲折性会随着水位和面积变化呈现相同的变化趋势,而水位高于3193.3 m时,岸线曲折性一直在增加,且水位上升速率越大则曲折性年际变化越大.(4)1973-2004年间青海湖水位下降和土地沙漠化是造成湖岸线变化的直接成因,人类活动及草场退化加速了湖泊岸线的变迁.2004年之后,随着青海湖水位回升与面积扩张,岸线逐渐后退,尤其在2017-2018年岸线后退距离最大.  相似文献   
93.
The timing of high lake-level stands during the Late Pleistocene in western China remains controversial. Here we report new results from Megalake Tengger based on a study of palaeo-shorelines and a drill core from Baijian Lake in the northwestern Tengger Desert. Multiple dating methods, based on luminescence signals (quartz optically stimulated luminescence, K-feldspar post infrared-infrared stimulated luminescence) and electron spin resonance signals of quartz, were used to date beach sands from palaeo-shoreline profiles at altitudes of ~1310 m (+20 m above lake level), ~1320 m (+30 m) and ~1350 m (+60 m), and from the top 20 m of sandy sediments from the drill core obtained from the modern beach of Baijian Lake. The dating results show that high lake-level stands associated with the previously reported Megalake Tengger (~1310–1320 m) occurred during the late Early to Middle Pleistocene, which is much earlier than previously reported. In addition, no geomorphological evidence of shorelines and sedimentary evidence from the drill core profile were found to support the previously reported Late Pleistocene lake levels. Our results indicate that the exact age of the previously reported ‘high lake level event’ in a large part of northwestern China during the Late Pleistocene needs to be re-evaluated.  相似文献   
94.
A one‐dimensional hydrodynamic lake model (DYRESM‐WQ‐I) is employed to simulate ice cover and water temperatures over the period 1911–2014. The effects of climate changes (air temperature and wind speed) on ice cover (ice‐on, ice‐off, ice cover duration, and maximum ice thickness) are modeled and compared for the three different morphometry lakes: Fish Lake, Lake Wingra, and Lake Mendota, located in Madison, Wisconsin, USA. It is found that the ice cover period has decreased due to later ice‐on dates and earlier ice‐off dates, and the annual maximum ice cover thickness has decreased for the three lakes during the last century. Based upon simulated perturbations of daily mean air temperatures across the range of ?10°C to +10°C of historical values, Fish Lake has the most occurrences of no ice cover and Lake Wingra still remains ice covered under extreme conditions (+10°C). Overall, shallower lakes with larger surface areas appear more resilient to ice cover changes caused by climate changes.  相似文献   
95.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
96.
The impact of climate change on Arctic rivers is expected to be severe. There is therefore a need for greater understanding of Arctic river temperature processes. This study quantifies the spatio-temporal variability of water temperatures in the Kårsa River, Sweden. Water temperature was monitored over two summers within the main proglacial channel and within braids fed by different sources. Longitudinal and lateral temperature patterns were assessed in relation to prevailing hydro-meteorology. Temperature metrics in the main channel increased with distance downstream but were moderated by a large lake, while temperatures in the braids were dependent upon channel source. The high temperature standard deviation and inter-site differences within the braids highlight the importance of braided channels for creating thermal habitat heterogeneity. Temperatures were dependent on hydro-meteorological conditions, with sensitivity to air temperature maximized during cooler, rainy conditions. These results shed new light on Arctic river temperature patterns and their controlling processes.  相似文献   
97.
Elevated shorelines and lake sediments surrounding Issyk Kul, the world's second largest mountain lake, record fluctuating lake levels during Quaternary times. Together with bathymetric and geochemical data, these markers document alternating phases of lake closure and external drainage. The uppermost level of lake sediments requires a former damming of the lake's western outlet through the Boam gorge. We test previous hypothesised ice or landslide dam failures by exploring possible links between late Quaternary lake levels and outbursts. We review and recompile the chronology of reported changes in lake site, and offer new ages of abandoned shorelines using 14C in bivalve and gastropod shells, and plant detritus, as well as sand lenses in delta and river sediments using Infrared Stimulated Luminescence. Our dates are consistent with elevated lake levels between ~45 ka and 22 ka. Cosmogenic 10Be and 26Al exposure ages of fan terraces containing erratic boulders (>3 m) downstream of the gorge constrain the timing of floods to 20.5–18.5 ka, postdating a highstand of Issyk Kul. A flow‐competence analysis gives a peak discharge of >104 m3 s–1 for entraining and transporting these boulders. Palaeoflood modelling, however, shows that naturally dammed lakes unconnected to Issyk Kul could have produced such high discharges upon sudden emptying. Hence, although our data are consistent with hypotheses of catastrophic outburst floods, average lake‐level changes of up to 90 mm yr–1 in the past 150 years were highly variable without any outbursts, so that linking lake‐level drops to catastrophic dam breaks remains ambiguous using sedimentary archives alone. This constraint may readily apply to other Quaternary lakes of that size elsewhere. Nonetheless, our reconstructed Pleistocene floods are among the largest reported worldwide, and motivate further research into the palaeoflood hydrology of Central Asia. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
98.
Complex flows in heterogeneous confined and unconfined aquifers is a phenomenon that continues to present difficulties in flow mapping and modelling in the field, laboratory, and through numerical simulations. It is often the case with complicated phenomena that transformative scaling and reduction of the problem through symmetry is of great efficacy in the formation of predictive models in both the laboratory and computational settings. A detailed a study of the application of a broad class of Lie scaling transformations on a set of equations representing the groundwater flows in heterogeneous confined and unconfined aquifers has produced a set of scaling relationships between the spatial variables, hydrologic variables, and parameters. The set of scaling transformations preserve the structure of the equations in the sense that the scaling transformations leave the initial‐boundary value system representing the invariant groundwater flows. This theoretical approach elucidates not only the scaling relationships but also the properties that hydrologic variables and parameters must satisfy in order for calling to be possible. Validation of the theory developed is carried out through a series of four numerical simulations using the USGS modflow ‐2005 software package. The results of these experiments demonstrate that the derived scaling transformations can effectively form predictive models of large‐scale phenomena at small scales with negligible error in many cases. Comments on the limitations of the approach and directions for future research are made in the closing sections. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
99.
A semi‐analytical method for calculating the response of single piles and pile groups subjected to lateral loading is developed in this paper. Displacements anywhere in the soil domain are tied to the displacements of the piles through decay functions. The principle of virtual work and the calculus of variations are used to derive the governing differential equations that describe the response of the piles and soil. The eigenvalue method and the finite difference technique are used to solve the system of coupled differential equations for the piles and soil, respectively. The proposed method takes into account the soil surface displacement along and perpendicular to the loading direction and produces displacement fields that are very close to those produced by the finite element method but at lower computational effort. Compared with the previous method that considered only the soil displacement along the loading direction, accounting for the multi‐directional soil displacement field produces responses for the piles and soil that are closer to those approximated by the finite element method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
100.
This study addresses paleoclimate influences in a southern Amazonia ecotone based on multiproxy records from lakes of the Carajás region during the last 45k cal a bp. Wet and cool environmental conditions marked the initial deposition in shallow depressions with detrital sediments and high weathering rates until 40k cal a bp. Concomitantly, forest and C3 canga plants, along with cool-adapted taxa, developed; however, short drier episodes enabled expansion of C4 plants and diagenetic formation of siderite. A massive event of siderite formation occurred approximately 30k cal a bp under strong drier conditions. Afterwards, wet and cool environmental conditions returned and persisted until the Last Glacial Maximum (LGM). The LGM was marked by lake-level lowstands and subaerial exposure. The transition from the LGM to the Holocene is marked by the onset of oscillations in temperature and humidity, with an expansion of forest and canga plants. Cool taxa were present for the last time in the Carajás region ~ 9.5–9k cal a bp. After 10k cal a bp , shallow lakes became upland swamps due to natural infilling processes, but the current vegetation types and structures of the plateaus were acquired only after 3k cal a bp under wetter climatic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号